Murine models of airway fungal exposure and allergic sensitization.

نویسندگان

  • Steven P Templeton
  • Amanda D Buskirk
  • Brett J Green
  • Donald H Beezhold
  • Detlef Schmechel
چکیده

Inhalation of common indoor filamentous fungi has been associated with the induction or exacerbation of allergic respiratory disease. The understanding of fungal inhalation and allergic sensitization has significantly advanced with the use of small animal models, especially mouse models. Numerous studies have employed different animal exposure and sensitization techniques, each with inherent advantages and disadvantages that are addressed in this review. In addition, most studies involve exposure of animals to fungal spores or spore extracts while neglecting the influence of hyphal or subcellular fragment exposures. Recent literature examining the potential for hyphae and fungal fragments to induce or exacerbate allergy is discussed. Innate immune recognition of fungal elements and their contribution to lung allergic inflammation in animal models are also reviewed. Though physical properties of fungi play an important role following exposure, host immune development is also critical in airway inflammation and allergy. We discuss the importance of environmental factors that influence early immune development and subsequent susceptibility to allergy. Murine studies that examine the role of intestinal microflora and prenatal or early life environmental factors that promote allergic sensitization are also evaluated. Future studies will require animal models that accurately reflect natural fungal exposures and identify environmental factors that influence immune development and thus promote respiratory fungal allergy and disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Warning to pay more attention to fungal allergic asthma in children

Asthma is a global problem that affects over 300 million people in the world. The main reason of asthma is allergy and atopy. Asthmatic patients are sensitized to allergens that can be resulting asthma attacks. Fungi as an allergen can be sensitized atopic people and present a severe asthma. Fungi have been found in water-damaged homes of asthmatic patients. Allergic asthma is associated with e...

متن کامل

Mainstream cigarette smoke exposure attenuates airway immune inflammatory responses to surrogate and common environmental allergens in mice, despite evidence of increased systemic sensitization.

The purpose of this study was to investigate the impact of mainstream cigarette smoke exposure (MTS) on allergic sensitization and the development of allergic inflammatory processes. Using two different experimental murine models of allergic airways inflammation, we present evidence that MTS increased cytokine production by splenocytes in response to OVA and ragweed challenge. Paradoxically, MT...

متن کامل

Mouse models to unravel the role of inhaled pollutants on allergic sensitization and airway inflammation

Air pollutant exposure has been linked to a rise in wheezing illnesses. Clinical data highlight that exposure to mainstream tobacco smoke (MS) and environmental tobacco smoke (ETS) as well as exposure to diesel exhaust particles (DEP) could promote allergic sensitization or aggravate symptoms of asthma, suggesting a role for these inhaled pollutants in the pathogenesis of asthma. Mouse models a...

متن کامل

Eosinophils in Fungus-Associated Allergic Pulmonary Disease

Asthma is frequently caused and/or exacerbated by sensitization to fungal allergens, which are ubiquitous in many indoor and outdoor environments. Severe asthma with fungal sensitization is characterized by airway hyperresponsiveness and bronchial constriction in response to an inhaled allergen that is worsened by environmental exposure to airborne fungi and which leads to a disease course that...

متن کامل

μ-chain-deficient mice possess B-1 cells and produce IgG and IgE, but not IgA, following systemic sensitization and inhalational challenge in a fungal asthma model.

Allergic bronchopulmonary aspergillosis is often difficult to treat and results in morbidity associated with chronic airway changes. This study assessed the requirement for B cells and their products in the allergic pulmonary phenotype in a murine model of fungal allergic asthma that mimics allergic bronchopulmonary aspergillosis. C57BL/6 and μMT mice (assumed to lack peripheral B cells) were s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical mycology

دوره 48 2  شماره 

صفحات  -

تاریخ انتشار 2010